

EFFECT OF ASCORBIC ACID CONCENTRATION AND HARVESTING DATE ON GROWTH AND YIELD OF THREE CORN VARIETIES (ZEA MAYS L.)

Labed Shareef Mohammed, Kotada Ibrahim Abdulla and Ather Saber Mustafa

Department of Field Crops, College of Agriculture, University of Tikrit, Iraq

Abstract

The experiment was conducted at the Field Crops Research Station / Collage of Agriculture / Tikrit University in the fall season 2017 to study the effect of ascorbic acid concentrations and the harvesting date on the growth and yield of corn. The experiment was performed using the factorial experiment with two factors: 3 varieties (Sarah, Fajir and Baghdad) × 3 concentrations of ascorbic acid (0, 100, and 200 mg/L⁻¹). The treatments were distributed according to the RCBD to study the growth traits, and using splintered splint plots system with RCBD, after addition of the harvesting date (30, 40 and 50 days after pollination) as a third factor to study the yield and its components. The results showed an increase in the treatment of the addition of 200 mg. L⁻¹ in all the traits (plant height, leaf area, and yield and its components). The superiority of variety (Sarah) was in the trait of plant height (227.66 cm), and superiority of variety (Baghdad) was in the number of grain.spike⁻¹ (35.08) and the weight of 300 grains (72.85 g). The harvest date after 50 days of pollination was significantly higher in both traits, weight 300 grains (73.41 g) and grain yield (7298.15 kg).

Keywords: Corn, Ascorbic acid, Harvesting date

Introduction

Corn crop (Zea mays L.) is one of the most important crops in the world and Iraq for its importance in the nutrition of human in direct use or in terms of its entry into many food products. It is also used to feed animals for entry into the main components of poultry or livestock concentrates due to the high nutritional value attributed to the high content of carbohydrates, proteins and sugars (Bukhsh et al., 2010). The importance of corn has been increased for use in biofuel production, as it is an important source of this fuel, raising its economic value in the world (Kim and Dale, 2004). Although the importance of this crop in Iraq, but it is suffering from the decline of cultivated areas, which was estimated according to the statistics of the Food and Agriculture Organization (FAO) by 76000 hectares in 2016, down to 50% of the cultivated area of ten years ago (FAO, 2018). As well as the decline in the productivity of this crop is an important factor in the decline of cultivation of this crop and low productivity. The cultivation of gypsum soils, which have an area in Iraq to more than 8 million hectares, led to the exit of large areas of cultivated land out of planting especially in this crop because of its low productivity due to the weakness of their building, the low ability to retain water, and the low content of organic matter and nutrients (Khairo, 2016). Therefore, it is useful to use stimulants for plant growth, which complement fertilizers added to the soil to improve the ability of the plant to build the root and shoot systems and raise levels of absorption and utilization of nutrients from the soil, which is positively reflected on vegetative growth and vital events and yield. Vitamins, amino acids and growth regulators come in the forefront of these stimulants, especially ascorbic acid (Vitamin C), which can be used in solutions to soak seeds to improve germination and growth of seedlings. Also, it used to add spray on the shoot system as it works to develop the root and shoot systems and stimulate the work of many enzymes. As well as it helps in building proteins, and its antioxidant role and detoxification of plants caused by environmental stresses, especially drought and lack of moisture, which can occur in gypsum soils for poor water retention. It also works to protect chlorophyll and raise the levels of photosynthesis (Smirnoff and Wheeler 2000 and

Sinha, 2003). One of the important factors for corn production is the cultivation of genotypes suitable for the environment, especially localized genotypes, to adapt them to the prevailing conditions in the environment, so it is useful to evaluate them under gypsum soil conditions and under the influence of spraying with ascorbic acid to increase their productivity. The date of harvest for these structures is also a specific factor of productivity because it may cause reduction of productivity, whether at the early harvest due to incomplete fullness and high humidity or delay, which may result in loss of dry matter or quality effect (Nally *et al.*, 2016).

Therefore, this research aims to study the response of local genotypes of corn to cultivate in gypsum soils under the influence of spraying with different concentrations of ascorbic acid and the effect of the date of early and late harvest.

Materials and Methods

An experiment was conducted at the College of Agriculture-University of Tikrit during the autumn season 2017 in gypsum soil with 21% gypsum (210 mg. kg⁻¹). The experiment was carried out with RCBD design in a factorial experiment of two factors. The first was cultivars which included three cultivars approved in local agriculture (Baghdad, Fajir, and Sarah. The second factor included three concentrations of ascorbic acid (0, 100, and 200 mg.L⁻¹) to study the traits of plant height, ear height, and leaf area. The same design was used for three factors after the introduction of the harvest date factor, which included harvest after 30, 40, and 50 days after the pollination, to study the traits of the yield and its components under the influence of the three factors and interventions.

The planting date was on 15/7/2017 in 6 lines for each treatment with a length of 5 m, 75 cm apart and 25 cm among plants. Phosphate fertilizer (Super Calcium Phosphate) (120 kg.h⁻¹) was added at the planting date with the addition of Nitrogen fertilizer (urea 46% N) in (160 kgN.h⁻¹) in three batches: The first was in the planting, the second and the third were at the stage of 6 leaves and when flowering in equal quantities. Then spray the ascorbic acid at the stage of

4 leaves with the spray of distilled water with the comparison treatment, with addition of a diffractive material to reduce the surface tension and to facilitate the penetration and spread of the acid solution into the plant tissue.

When the emergence of male and female floral inflorescences and then put paper bags on them when they appeared in 30 plants per treatment, they were pollinated simultaneously. The data of pollination and harvesting were recorded in each treatment after 30, 40, and 50 days after pollination from 10 plants. The traits of plant height, ear height, and leaf area were calculated according to the equation:

Leaf area $(cm^2) = (length of leaf under the ear leaf)^2 \times 0.75$ (El-Sahookie, 1985) As well as studying the traits of the yield and its components (number of rows. ear⁻¹, number grains. row⁻¹ and weight of a 300 grains (gm). The data were analyzed using (SAS) software and the Duncan Multidimensional Test was used to test the significant at (0.05) probability.

Results and Discussion

Table (1) shows the sources of variation and the mean squares of the study factors in the studied traits that the cultivars significantly affected the plant height, but on significant effect on both leaf area and ear height was found. Ascorbic acid had a significant effect in both leaf area and plant height and did not significantly affect the ear height. Interaction between the cultivars and the concentration of ascorbic acid was not significant in the traits of this study.

Table 1 : Analysis	of variance of leave area	, plant high and ear high	n characters

Ear high	Plant high	Leave area	d.f	Source of variance
137.98	20.7	2438361.5	2	Replication
95.57 ^{n.s}	553.2**	276902.8 ^{n.s}	2	Varieties
319.56 ^{n.s}	563.05**	1170728.5**	2	Ascorbic level
219.59 ^{n.s}	$8.14^{n.s}$	34787.9 ^{n.s}	4	Varieties x Ascorbic
103.03	55.00	91946.8	16	Error
			26	Total

The addition of ascorbic acid spraying on corn plants resulted in a significant and continuous increase in leaf area by increasing the concentration of ascorbic acid in the solution and with a significant increase in each addition of acid (6209.3, 6501.3, and 6926.2 cm²) for the treatments (0, 100, and 200 mg.L⁻¹) respectively (Table 2) with an increase of 4.7% and 11.5% for acid treatment compared with control treatment. This encouraging of chlorophyll and protein building and thus increase the rates of photosynthesis is important in food processing in plants, which is necessary to

expand the leaves requirement because of the increased rates of division and elongation caused by ascorbic acid, which results in increased growth of leaves longitudinal and transverse. These results found by (Darvishan *et al.*, 2013 and Ali *et al.*, 2015).

The Duncan test for the non-significant interaction of ascorbic acid concentration showed that its highest value was in the interaction between Baghdad variety and the added level of 200 mg. L^{-1} (7125.7 cm²).

Cultivars mean	Lev	Cultivar		
Cultival S mean	200	100	0	Cultival
6430.0a	6720.0a-d	6376.0b-е	6194.0d-e	Sarah
6459.7a	6934.0ab	6341.7cde	6103.3e	Fajir
6747.6a	7125.7a	6786.3abc	6330.7cde	Baghdad
	6926.2a	6501.3 b	6209.36b	Ascorbic mean

The increase in leaf area by increasing the concentration of ascorbic acid is associated with the increase in plant height by increasing the levels of ascorbic acid. The increase in leaf area and the resulting increase in photosynthesis, food processing, and division and elongation resulted in increased plant height, which increased with acid concentration (215.24 , 221.25 and 230.92 cm) for the treatments of (0, 100 and 200) mg. L^{-1} . The increasing of plant high may save more time to increase leaf area more than the comparison plants with the increasing of acid addition from 0 to 100 and then to 200 mg. L^{-1} . The effect of ascorbic acid was found by (Atta-Ullah, 2016 and Shahnawas *et al.*, 2017).

Baghdad variety superior in plant height and that this superiority is due to genetic variation between the varieties and the extent of their response to Ascorbic acid and the conditions of planting in gypsum soils. The differences in plant height among varieties found by (Aslam *et al.*, 2013).

Table 3: Means of Plant high (cm) for three varieties of corn with the effect of spraying levels of ascorbic acid:

Varieties mean	As	- Varieties		
v al lettes mean	200	100	0	v ai ieties
227.66a	236.56a	227.23ab	219.20bc	Sarah
213.45b	221.03bc	210.93c	208.40c	Fajir
226.38a	235.16a	225.60ab	218.13bc	Baghdad
	230.92a	221.25b	215.24b	Ascorbic mean

The studied varieties, concentration of ascorbic acid and their interaction did not affected significantly in the ear height and the number of rows. ear^{-1} (Table 4, 5, 6).

Table 4: Means of ear high	(cm) for three varieties of	corn with the effect of spraying levels of ascorbic acid:

Varieties mean	Ase	Variety		
val lettes mean	200	100	0	variety
91.97a	99.7ab	90.63b	85.54b	Sarah
93.36a	90.35b	94.14b	95.61b	Fajir
98.8a	114.08a	88.08b	92.41b	Baghdad
	101.39a	90.95a	91.18a	Ascorbic mean

Table (5) show the analysis of variance, degree of freedom and mean square of statistical analysis of data grain yield and its components.

Table 5 : Analysis o	f variance of gr	in yield and its com	ponent characters.

Grain yield	300 grain weight	No. grain row ⁻¹	No. row.ear ⁻¹	d.f	Source of variance
3.640	3.640	20.734	4.9267	2	Replication
37.48 ^{ns}	37.48 ^{ns}	12.618 *	0.0445 ^{ns}	2	Varieties
3.75	3.74	2.308	1.2545	4	Error(A)
135.61*	135.60**	31.224*	0.2060 ^{ns}	2	Concentration
1.678 ^{ns}	1.678 ^{ns}	1.569 ^{ns}	0.1377 ^{ns}	4	Varieties x Concentration
1.452	1.452	7.468	1.3218	12	Error(B)
114.52**	114.516**	7.516 ^{ns}	0.2316 ^{ns}	2	Harvest date
6.83 ^{ns}	6.834 ^{ns}	1.622 ^{ns}	0.2788 ^{ns}	4	Varieties x Date Harvest
1.192 ^{ns}	1.192 ^{ns}	0.818 ^{ns}	0.0392 ^{ns}	4	Concentration x harvest date
2.948 ^{ns}	2.948 ^{ns}	0.528 ^{ns}	0.2555 ^{ns}	8	Varieties x Concentration x Harvest date
5.92	5.927	5.873	1.6298	36	Error (C)
				80	Total

The increased concentration of ascorbic acid spray on corn plants has increased the number of grains. row⁻¹ to 35.53 and a 9.4% increase compared to the comparison treatment that produced 33.42 grain. Note that the factors 100 and 200 mg.L⁻¹ did not differ significantly from each other. This superiority may be due to the role of ascorbic acid as a activator vitamin of the processes, which led to the superiority of this treatment in plant height and leaf area (Tables 2 and 3), resulting in increased performance of flowers in the rows of ear formed, as well as the role of acid in increasing the pollination of flowers and thus increase the number of grains. row⁻¹. Dolatabadion *et al.* (2010) and Abdel-Adheem (2017) were found exceeded the effect of

ascorbic acid up to 200 mg.L, in increasing the number of grains. row⁻¹ due to the activation of this acid for vital processes and its role in promoting the formation of flowers and pollination in the ear rows.

The Baghdad variety was superior to the number of grains.row⁻¹ (35.08), which was not significantly different from variety Sarah (34.27) grain.row⁻¹ (Table 7). This is due to variation in the genotype and the extent to which these varieties respond to the experimental factors (ascorbic acid and date of harvest). The date of harvest did not significantly affect this character, because the ears, seeds, and rows were completed and the date of harvest was not affected.

Table 6: Means of No. rows.ear⁻¹ for three varieties of corn with the effect of spraying levels of ascorbic acid.

Varieties x Harvest date	Harvest date	Ascorb	ic concentr	ration mg.L ⁻¹	Varieties
varieties x narvest date	(day after pollination)	200	100	0	varieties
15.59a	30	16.07a	15.50a	15.20a	
15.51a	40	15.57a	15.53a	15.43a	Sarah
15.13a	50	15.03a	15.30a	15.07a	
15.64a	30	15.73a	15.63a	15.57a	
15.35a	40	15.33a	15.53a	15.200a	Fajir
15.11a	50	15.20a	15.40a	15.63a	
15.41a	30	15.36a	15.40a	15.46a	
15.51a	40	15.63a	15.26a	15.63a	Baghdad
15.54a	50	16.00a	15.46a	115.16a	
Mean of harvest date					
15.55a	30	15.72a	15.51a	15.41a	Ascorbic x Harve
15.46a	40	15.51a	15.44a	15.42a	
15.36a	50	15.41a	15.39a	15.29a	date
Mean of varieties					
15.41a	Sarah	15.55a	15.44a	15.23a	A see while w
15.47a	Fajir	15.42a	15.52a	15.47a	 Ascorbic x Varieties
15.49a	Baghdad	15.67a	15.38a	15.42a	varieties
		15.54a	15.44a	15.37a	Concentration mea

The two-way interaction of the experimental factors was not significant as well as the three-way interaction. However, the Duncan test for the interaction between the concentration of ascorbic acid and the harvest date indicates that the interaction between the harvest date after 50 days after the pollination and the concentration 200 mg . L^{-1} of ascorbic acid produced the highest number of grains (35.89 grains. row⁻¹) (Table 7).

The role of ascorbic acid in the activation of biological processes, especially the division, elongation, photosynthesis, and its reflection in the increase of plant height and leaf area was positively reflected in the increase of vegetative system and thus increase the rates of photosynthesis and activate the transfer of dry matter accumulated in the vegetative part to the seeds in ears (Abrahamian and Kantharajah, 2011). Therefore, the use of ascorbic acid led to a significant increase in the weight of 300 grains. The plants treated with a concentration of 200 mg. L⁻¹ were recorded (73.59 g) superior to the treatments (0, 100 mg . L⁻¹). This is consistent with what Sary *et al.* (2006) found in which he mentioned increasing the weight of the grain by increasing the concentration of ascorbic acid.

T	able 7: Means of No.	grains row ⁻¹ fo	or three varieties of	of corn wi	ith the effect of	spraying leve	els of ascorbic aci	d.

Varieties x Harve	est date	Harvest date(day	ay Ascorbic concentration mg.L ⁻¹			Varieties
		after pollination)	200	100	0	varieues
33.50a		30	35.07a	33.37a	32.07a	
34.43a		40	35.73a	34.40a	33.17a	Sarah
34.87a		50	35.80a	35.30a	33.53a	
33.46a		30	34.57a	33.37a	32.47a	
34.25a		40	35.63a	33.07a	34.07a	Fajir
33.43a		50	35.23a	33.13a	31.93a	
36.27a	30	35.03a	34.20a	33.60a		
35.41a	40	36.10a	34.96a	35.17a	Baghdad	
35.54a	50	36.63a	35.17a	34.83a		
Mean of harvest date						
33.74a	30	34.89ab	33.64ab	32.71b	Ascorbic x	
34.70a	40	35.82a	34.14ab	34.13ab	Harvest date	
34.62a	50	35.89a	34.53ab	33.43ab	Haivest uate	
Mean of varieties						
34.27b	Sarah	35.53a	34.35a	32.92a	A secultion r	
33.71b	Fajir	35.14a	33.19a	32.82a	Ascorbic x Varieties	
35.08a	Baghdad	35.92a	34.78a	34.53a	varieties	
		35.53a	34.10ab	33.42a	Concentration mean	

Harvest date has a significant effect, and the early harvest after 30 days of pollination led to the incomplete accumulation of dry matter and low grain weight. This treatment gave the lowest weight of 300 grains (69.45 g). The delay of the harvest date beyond 50 days after the pollination caused the increase in the weight of the grain to complete the accumulation and transport of dry matter in the grain and gave the highest value reached (73.41 g) (Table 8). The early

date of harvest causes high grain humidity and low dry weight, thus reducing the weight of 300 grains (Siddique and Wright, 2013). The three varieties differed in the weight of 300 grains and the superiority of variety Baghdad at a value of 72.85 g, which did not differ significantly from the variety Sarah. This variation is due to the difference among these varieties in their characteristics associated with their genotypes.

|--|

Varieties x Harvest date	Harvest date	Ascor	Varieties			
	(day after pollination)	200	100	0	varieties	
68.80c	30	72.23a-i	67.87i-k	66.300jk		
72.78ab	40	73.77a-f	73.13a-g	71.43a-i	Sarah	
74.24a	50	75.23ab	75.50a	72.00a-i		
67.95c	30	69.40e-k	68.77g-k	65.70k		
71.42b	40	73.63a-f	72.43a-i	68.200h-k	Fajir	
72.15ab	50	73.77a-f	72.77a-h	69.93d-k	5	
71.61b	30	73.26a-g	72.60a-i	68.96f-k	Baghdad	
73.11ab	40	74.70а-е	74.00а-е	70.63b-j		
73.82ab	50	76.27a	75.00abc	70.20c-k		
Mean of harvest date						
69.45b	30	71.63bc	69.74c	66.99d	Ascorbic x	
72.44a	40	74.03ab	73.19ab	70.09c	Harvest date	
73.41a	50	75.09a	74.42a	70.71c	riai vest uale	
Mean of varieties						
71.94b	Sarah	73.74a	72.17b	69.91c	Ascorbic x Varieties	
70.51b	Fajir	72.26b	71.32b	67.94d		
72.85a	Baghdad	74.74a	73.86a	69.93c		
		73.59a	72.45.b	69.26c	Concentration mean	

This is consistent with what was found by Abdel-Adheem (2017) of the difference in the weight structures under study in this trait under the influence of the concentration of ascorbic acid. The Two-way and Three-way interactions were not significant in this trait. The non-significance of the F values in these interactions and the variance of the Duncan test for the treatments among the means showed that the interactions of variety Baghdad × Harvest date (50 days), harvest date (50 days) × concentration 200 mg.L⁻¹ gave the highest values in this trait (73.82, 75.09 and 74.74 g) respectively (Table 8).

The effect of the two spray treatments 100 and 200 mg. L^{-1} did not differ on each other in the grain yield. The treatment of spraying 200 mg. L^{-1} in this trait exceeded the

treatment of non-spraying with a significant superiority (7.092 ton.h⁻¹) (Table 9). The superiority of spraying treatment of 200 mg. L⁻¹ in grain yield is due to the spraying of this concentration caused the superiority of the plants of this treatment significantly higher in the traits of growth and yield components result of the increase in the rates of photosynthesis, division and elongation, the collection and transfer of stored materials to seeds, and increase the number of grains (Darvishan, 2013). The varieties did not differ significantly in this trait, While the early harvesting caused a significant reduction in the yield. Harvesting treatments after 40 and 50 days after pollination exceeded the early treatment (30 days after harvest) with values of (6.536, 7.148 and 7.292 ton.h¹) for the three treatments respectively (Table 7).

Table 9: Means of grain	yield (ton.h	¹) for three varieties of corn	with the effect of	spraying levels of ascorbic acid
-------------------------	--------------	--	--------------------	----------------------------------

Varieties x Harvest date	Harvest date	Ascorbic concentration mg.L ⁻¹			Varieties
	(day after pollination)	200	100	0	varieties
6.590 b	30	6.594 c-f	6585.0cdef	6.592 c-f	Sarah
7.165 a	40	7.249 abc	7.205 a-d	7.041 a-d	
7.378a	50	7.454a	7.381 a	7.299 ab	
6.502b	30	6.600 c-f	6.554def	6.352 ef	
7.106a	40	7.219 a-d	7.144 a-d	6.956a-e	Fajir
7.214a	50	7.362 a	7.225 a-d	7.055 a-d	5
6.517 b	30	6.629b-f	6.643 b-f	6.280 f	Baghdad
7.173 a	40	7.289 ab	7.211a-d	7.019 a -d	
7.302a	50	7.436a	7.285 ab	7.184 a-d	
Mean of harvest date					
6.536 b	30	6.607c	6.594 c	6.408 c	Ascorbic x Harvest date
7.148a	40	7.252ab	7.187ab	7.005 b	
7.292a	50	7.417 a	7.297ab	7.179ab	
Mean of varieties					
7.194 a	Sarah	7.099a	7.057ab	6.977ab	Ascorbic x Varieties
6.941 a	Fajir	7.060ab	6.974ab	6.787b	
6.997a	Baghdad	7.118a	7.046ab	6.827ab	
		7.092a	7.026b	6.864c	Concentration mean

These results on the effect of the harvest date in the yield were found by Vera (2004). This decrease in grain yield in early treatment resulted from low weight of seeds, which is due to the main reason for the decline in grain yield in contrast to the other two treatments, which increased the accumulation of dry matter and increased grains weight in the ear and thus increase in grain.

References

- Abdul-Adheem, M.S. (2017). Effect of water stress and ascorbic acid on growth and Yield of maize. M. Sc. Thesis, College of Agriculture, Baghdad University.
- Abrahamian, P. and Kantharajan, A. (2011). Effect of vitamins on in vitro organogenesis of plant. Amer. J. Plant Sci., 2 : 669–674.
- Ali, Z.A.; Hussin, M.M. and EI-Taher, A.M. (2015). Effect of antioxidant on some morphological and anatomical features of maize grown under salinity conditions. Coden (USA): IJCRGG. 8(6): 389-400.
- Alta-Ullah, H.; Javed, F.; Wahid, A. and Sadia, B. (2016). Alleviating effect of exogenous application of ascorbic acid on growth and mineral nutrients in cadmium

stressed barley (*Hordeum vulgare* L.) seedling. Int. J. Agri. Bio., 18(1): 73-79.

- Aslam, M.; Zamir, M.S.I.; Afazal, I. and Yaseen, M. (2013a). Morphological and physiological response of maize hybrids to potassium application under drought stress. J. Agric., Res., 51(4): 443-454.
- Bukhsh, M.A.; Ahmad, R.; Malik, A.U.; Hussain, S. and Ishaque, M. (2010). Agro-physiological traits of three maize hybrid as influenced by varying potassium application. Life sci. Int. Jour., 4: 1487-1496.
- Dolatabadion, A.; Modarressanavy, S.A. and Silan, A. (2010). Effect of Ascorbic acid foliar application on yield, yield component and several morphological traits of grain corn under water deficit stress conditions. Not Sci. Biol., 2(3): 45–50.
- Darvishan, M.H.; Moghadam, R.T. and Zahedi, H. (2013). The effect of foliar application of ascorbic acid (Vit. C) on physiological and biochemical changes of corn (*Zea mays* L.) under irrigation in different growth stages Dept. of Agronomy and plant Breeding. Eslamshahr Branch Azad Univ Tehran, Iran 58: 195-200.

- El-Sahookie, M.M. (1985). A shortcut method for estimating plant leaf area in maize Z. Acker und pflanzenbau. 154: 157.
- FAO (2018). Crop and livestock products www.fao.org/faostat/en/#data/tp
- Khairo, A.M. (2016). Water consumption use of autumn corn (Zea mays L.) under deficit irrigation condition in a gypsiferous soil / Salahaddin province. Ph.D. Dissertation, College of Agriculture, Tikrit University.
- Nally, L.; Dixon, B.; Tack, J.; Barkley, A. and Jagadish, K. (2016). Optimal harvest moisture for maximizing midsouth rice milling yield and returns. Agronomy Jour., 18(2): 700-709.
- Sary, G.A.; Salwa, M.I.; Thabet, E.M.A. and Sherbeny, T.M.S. (2006). Effect of irrigation, nitrogen fertilizer and ascorbic acid On wheat production in sandy soil. 1-Yield and yield component. Benha University, Faculty of agriculture, Agronomy department (Academic Press) PP 1-11.
- Shahnawz, M.D.; Chauhan, R. and Sanadhya, D. (2017). Import of aluminum toxicity on physiological aspects of

barley (*Hordeum vulgare* L.) cultivars and its alleviation through ascorblc acid and salicylic acid seed priming. Int. J. Curr. Microbiology App. Sci. 6(5): 875-891.

- Siddique, A.B. and Wright, D. (2003). Effect of time of harvest at different moisture contents on seed fresh weight, dry weight, quality (Viability and Vigor) and food reserves of peas (*Pisum sativum* L.) Asian Jour. of plant Sci. 2(13): 983 992.
- Sinha, S. (2003). Interactive metal accumulation and its toxic effects under repeated Exposure in submerged plant *Najas indica* Cham. Bulletin of envir. Cont Toxi . Lucknow 70 (4): 696–704.
- Smirnoff, N. and Wheeler, G.L. (2000). Ascorbic acid in plants. Biosynthesis and Function. Rev. plant Sci. 19: 267–290.
- Vera, C.L.; Downey, R.K.; Woods, S.M.; Raney, J.P.; Grego, D.I.M.; Elliett, R.H. and Johnson, E.N. (2007). Yield and quality of canola seed as affected by stage of maturity at swathing. Canadian Jour plant Sci., 78:13-26.